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Opinion
TGF-b superfamily ligands govern normal tissue devel-
opment and homeostasis, and their dysfunction is a
hallmark of many diseases. These ligands are also well
defined both structurally and functionally. This review
focuses on TGF-b superfamily ligand engineering for
therapeutic purposes, in particular for regenerative med-
icine and musculoskeletal disorders. We describe the key
discovery that structure-guided mutation of receptor-
binding epitopes, especially swapping of these epitopes
between ligands, results in new ligands with unique
functional properties that can be harnessed clinically.
Given the promising results with prototypical engi-
neered TGF-b superfamily ligands, and the vast number
of such molecules that remain to be produced and
tested, this strategy is likely to hold great promise for
the development of new biologics.

TGF-b superfamily ligands as biologics
The pharmaceutical industry is rapidly changing as the
cost of developing small molecule drugs increases and new
opportunities for the use of biomolecules emerge. It is
forecast by the IMS Institute for Healthcare Informatics
that pharmaceutical manufacturers will experience slow
growth through 2016, while biologic manufacturers will
expand and account for 17% of total global spending on
medicines by 2016 [1]. This rapid development of biothera-
pies, including the use of biosimilars and biobetters, repre-
sents a paradigm shift in the medical field and reflects
recent and rapid advances in our understanding of the
structure and function of key biological molecules and
signaling pathways involved in diseases and disorders.

The TGF-b superfamily consists of ligands that are found
in a diverse range of cell and tissue types where they play
ubiquitous roles in a plethora of fundamental cellular events
during developmental processes, tissue homeostasis, and
disease [2–7]. The TGF-b superfamily consists of 33 mem-
bers that can be generally divided into TGF-b, bone mor-
phogenetic protein (BMP), growth and differentiation factor
(GDF), activin and inhibin, nodal, Mü llerian inhibiting
substance (MIS), and glial cell line-derived neurotrophic
factor (GDNF) subfamilies [3,7]. Effective development of
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biologics to exploit these natural functionalities depends on
a detailed understanding of the relationship between pro-
tein structure and function. In the case of the TGF-b super-
family, numerous studies have demonstrated that these
ligands share a canonical ‘butterfly-shaped’ structure
(Figure 1A). Although heterodimers have been reported,
TGF-b superfamily ligands are generally homodimers in
which the two subunits are related by twofold rotational
symmetry around the intermolecular disulfide bond
through a cystine knot, a hallmark of this ligand family
[8–22]. Each subunit consists of a flat, elongated b-sheet
structure. Significant structural variations exist between
ligands of different subfamilies, as illustrated by the fact
that BMPs are more rigid with two spread wings whereas
activins are more compact with two flexible wings and a
disordered type I receptor-binding loop [9,16]. The function-
al significance of these variations is currently not well
established, although the flexibility of activin appears to
play a key role in determining its low affinity for type I
receptors and cooperative mode of type I receptor binding in
the presence of its high-affinity type II receptors [13].

The TGF-b subfamily has been implicated in many
developmental processes [23]. The BMP/GDF subfamily
regulates osteo-, chondro-, and tenogenesis, and several
other processes [24,25]. Activins and inhibins have been
shown to be important in multiple biological processes
including testis [26,27] and skin [28] development, wound
repair [29,30], and the maintenance of stem cell pluripo-
tency [31]. Dysfunction of TGF-b superfamily ligand sig-
naling can result in multiple pathologies including those
related to musculoskeletal and cardiovascular systems
[4]. Importantly, aberrant TGF-b signaling plays a major
role in various cancers such as colorectal [32], prostate
[33,34], breast [35–38], ovarian [39], and melanoma
[40]. Given the broad significance of TGF-b signaling,
directed targeting of this pathway is likely to have broad
therapeutic potential in what are generally referred to as
target-directed therapeutics.

In this review we discuss structure-guided design and
potential therapeutic applications of engineered TGF-b
superfamily ligands. We highlight recent progress with
specific designer chimeras of TGF-b superfamily ligands
that may be particularly useful in regenerative medicine
approaches and the treatment of musculoskeletal disor-
ders. However, this approach provides a means to design
and create a vast number of designer chimeras with wide-
ranging signaling activities that can function as biobetters
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Figure 1. TGF-b superfamily ligand structure and mode of receptor assembly. (A) Ribbon diagram of BMP2 illustrating that TGF-b superfamily ligands have a ‘butterfly’-like

structure. One monomer of the BMP2 homodimer is shaded yellow and the other is shaded blue; the cysteines forming the disulfide bonds linking the monomers are

depicted by yellow spheres. (B) The structure of BMP2 (yellow and blue monomers) bound to its type I (BMPRIa/ALK3, red) and type II (ActRII, green) extracellular domains.

As with other TGF-b superfamily ligands, the BMP2 dimer assembles two type I and two type II signaling receptors. (C) BMP2 and the related TGF-b superfamily ligand,

activin A, assemble type I and type II receptors in a similar manner and share type II signaling receptors (i.e., ActRII and ActRIIB). However, BMP2 utilizes the type I receptors

ALK2, 3, and 6 and signals via Smads 1, 5, and 8, while activin A signals via the type I receptor ALK4 and Smads 2 and 3. BMP2 and activin A are depicted in cartoon form

with one monomer being yellow and the other monomer blue, and with the type I receptor-binding epitopes shaded red and the type II receptor-binding epitopes shaded

green (light shading, lower affinity; dark shading, higher affinity).
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for the treatment of human diseases including fibrosis,
diabetes, and cancer.

TGF-b superfamily ligands are amenable to therapeutic
protein engineering
In addition to their biological importance and functional
variety, the chemical stability and relatively easy produc-
tion of TGF-b superfamily ligands make them attractive
candidates as biologics. However, to control the activity of
engineered TGF-b superfamily ligands they must be care-
fully tailored in a manner that will require a detailed
understanding of the structure/function relationships of
the natural ligands from which they are derived.
2

TGF-b superfamily ligands signal by assembling two
type II and two type I transmembrane serine kinase
receptors into hexameric ligand–receptor signaling com-
plexes (Figure 1B,C). Ligand-induced receptor assembly
allows the type II receptor kinase to phosphorylate and
activate the type I receptor kinase, which in turn initiates
downstream signaling by phosphorylating cytoplasmic
Smad (from SMA, small body size; and MAD, mothers
against decapentaplegic) proteins (Figure 1C) [2,41–43].
In general, TGF-b superfamily ligands can be divided
into two major groups defined by the two separate Smad
pathways. Activins, nodal, and TGF-bs signal predomi-
nantly through Smad2 and Smad3 [44,45] (Figure 1C left),
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whereas BMPs and GDFs generally signal via Smads 1, 5,
and 8 [42] (Figure 1C right). This signaling is also regu-
lated in a ligand-dependent manner by a variety of secret-
ed ligand traps such as follistatin and noggin, and by
coreceptors including betaglycan (TGF-bRIII) and cripto
[43].

TGF-b superfamily ligands share a common structural
scaffold but are distinguished by their various affinities for
type I and type II signaling receptors. There are dispro-
portionately more TGF-b superfamily ligands (33 in hu-
man) than receptors (seven type I and five type II).
Therefore, individual affinities between ligands and recep-
tors are as crucial as their binding specificities for appro-
priate receptor assembly and signaling outcome. An H3
helix and pre-helix loop of the ligand constitute the type I
receptor-binding epitope, while the wing tips constitute the
type II receptor-binding epitopes [8] (Figure 1). The mech-
anism of receptor assembly by BMP/GDF subfamily li-
gands can be inferred from the ternary complex of
BMP2 with the extracellular domains (ECDs) of its type
II and type I receptors (Figure 1B). This shows that BMP2
does not undergo significant conformational changes upon
binding to its receptors, and that the receptor ECDs do not
interact with each other [46]. Conversely, the X-ray crystal
structure of TGF-b3 bound to its type I receptor Alk5 (TGF-
bRI) and type II receptor TGF-bRII ECDs indicates a
different mode of receptor assembly by the ligand in which
the two types of receptor ECDs do interact [47]. The BMP7/
ActRII complex structure [48] shows that BMPs can bind to
type I and type II receptor ECDs independently without a
change in the shape of the ligand. This again differs from
two activin A/ActRIIB ECD structures [12,13] which show
that activin is flexible and can undergo significant confor-
mational change upon binding to its high-affinity type II
receptor. This flexibility may be necessary for subsequent
activin binding to its type I receptor ALK4 [13]; atomic
structures of ternary activin/ActRII/ALK4 complex would
be instrumental to better understand how activin may
interact with receptors during formation of its complex.
Even less is known about receptor assembly by nodal and
related ligands that require a coreceptor from the epider-
mal growth factor-cripto/FRL1/cryptic (EGF-CFC) protein
family for signaling [49,50]. It is clear that TGF-b super-
family ligands assemble their signaling receptors into
active signaling complexes in a manner that highly
depends not only on their receptor specificities but also
on their respective affinities for these receptors and asso-
ciated coreceptors.

The type I and type II receptor-binding epitopes on TGF-
b superfamily ligands are well characterized and, as men-
tioned above, many ligand/receptor complexes have been
studied in detail structurally. In a simplified view, one can
hypothesize that the functionality of a ligand is strongly
correlated with its type I receptor-binding epitope because
the type I receptor phosphorylates Smad proteins and
determines which Smad pathway, Smad2/3 or Smad1/5/
8, will be activated. However, manipulating affinities to
both type I and type II receptors can change the potency of
chimeric ligands. Therefore, by mixing and matching the
receptor-binding epitopes for type I and type II, one can
design a chimeric ligand for a specific purpose.
Redesigning TGF-b superfamily ligands opens new
therapeutic opportunities
In principle, the formation of heterodimers rather than
homodimers represents the simplest way to alter the
functionality of TGF-b superfamily ligands, and the ratio-
nale for this approach is based on the observation that
several ligands that naturally occur as heterodimers have
unique properties. For example, BMP4/7, BMP2/7, and
BMP2/6 are each more potent in bone and cartilage induc-
tion than are the corresponding homodimers [51–54]. It
has also been shown that the BMP2/6 heterodimer is a
more potent inducer of human embryonic stem cells than is
either homodimer [55].

Importantly, structural and functional experiments
demonstrate that the binding epitopes for type I and type
II receptors within each monomer of TGF-b superfamily
ligands are distinct and that they can function indepen-
dently from one another. Targeting the binding epitopes is
therefore an obvious way to alter ligand function. For
example, mutations in the binding epitopes created specific
agonists or antagonists of BMP2 [56]. In another example,
site-directed mutagenesis experiments led to the identifi-
cation of activin A point mutants with disrupted type I
receptor binding but with type II receptor binding indis-
tinguishable from that of wild type activin A [57]. These
mutants lacked signaling activity and acted in a dominant
negative manner to antagonize activins and other ligands
that signal via activin type II receptors [57]. Activin type II
receptor antagonists were also generated by replacing a
large portion of the type I receptor-binding epitope of
activin A with the corresponding region of the biologically
inactive activin-C [58]. Chimeric ligands were also gener-
ated by swapping type I and type II receptor-binding
epitopes between activin A and either BMP2 or BMP7
[59]. Once again, the type II receptor-binding epitope of
activin A was unaffected by changes in the type I receptor-
binding region. In this case, however, fusing the type I
receptor-binding epitopes of BMP2 or BMP7 to the type II
binding epitope of activin A caused signaling specificity to
switch from Smad2/3 to Smad1/5/8 [59].

In general, the therapeutic potential of these mutant
TGF-b ligands remains to be determined using animal
models. Nevertheless, the approach provides an important
proof of concept that the functional properties of TGF-b
superfamily ligands can be altered in a predictable manner
to yield mutants with unique properties such as receptor
antagonism or switched receptor specificity. Importantly,
these studies paved the way for more systematic chimera
studies as described below.

Rationale for random assembly of segmental chimera
and heteromers (RASCH)
As mentioned above, the available crystal structures of
TGF-b superfamily ligands reveal that they share a similar
overall architecture. Each of the two fingers consists of two
b- strands that, together with the pre-helical loop and the
a-helix H3, make up a total of six structurally distinct
segments per monomer. Each ligand can be divided into six
segments according to its structure providing the basis for
the RASCH strategy (Figure 2) [60]. Through a process of
segmental recombination an enormous number of chimeric
3



4

3
1

2

5
6

1 2 3 4 5 6

Type I receptor

AB chimera
(BABBAA)

1 of 64

Type II receptor

Random
assembly

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

N-terminus

Finger 1 Finger 2

α-Helix

C-terminus

Ligand A

Ligand B

TRENDS in Pharmacological Sciences 

Figure 2. Structure-guided generation of TGF-b superfamily ligand chimeras. Based on their crystal structures, TGF-b superfamily ligand sequences can be divided into six

structural segments and then mixed in a systematic way as is shown for a BMP2 monomer. This segment-swapping strategy is termed random assembly of segmental

chimera and heteromers (RASCH). Segments 2, 5, and 6 constitute the type II receptor-binding epitope of the ligand, while segments 3 and 4 make up the type I receptor-

binding site. For two ligands A and B, random assembly of segments yields a total of 26 = 64 distinct AB chimeras, and one of them (BABBAA) is depicted.
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ligands can be created when segments are randomly in-
corporated from all 33 TGF-b superfamily ligands. For
instance, 64 = 26 chimeric ligands would be generated if
six segments were swapped even between any two ligands.
We focus here on two studies in which only pairs of ligands
were used for segment swapping.

Activin A/BMP2 chimeras
Activin A and BMP2 share type II signaling receptors but
utilize distinct type I receptors and Smad proteins. The
overlapping but divergent characteristics of these ligands
prompted us to combine them in a search for novel chi-
meras with interesting and useful signaling properties. A
library of activin A/BMP2 (AB2) chimeras is denoted by the
code (BXXXXX) where X is either A (activin A) or B
(BMP2). Segments were mixed systematically resulting
in 32 = 25 AB2 library chimeras [60]. The first segment
is always from BMP2 because chimeras with the first
segment derived from activin A cannot be efficiently
refolded. There are many interesting properties of such
chimeras that can be generalized. As it was hypothesized,
the type I receptor-binding epitope defines Smad specificity
and thereby determines signaling outcome. Segments
3 and 4 are crucial, therefore, because they define the type
I epitope (Figure 2). We find that segmental swapping can
produce two key outcomes: (i) when segments 3 and 4 are
both from activin (AA) or BMP2 (BB) the resulting chimera
will be endowed with activin or BMP2 Smad specificity,
respectively (Figure 3D); and (ii) when segments 3 and
4 are mixed (AB or BA) the resulting chimeras will lack
type I receptor binding and likely function as antagonists
(Figure 3B,C).

In addition, diversity arises from the fact that both
parental ligands can bind to the same type II receptors,
ActRII/IIB, but with different affinities (Figure 3A). Acti-
vin A is known to possess very high affinity for its type II
4

receptors while BMP2 affinity for these receptors is much
weaker [60–62]. Therefore, both the activity and antago-
nistic effect resulting from loss of type I receptor binding
are graded depending on the type II receptor-binding
affinity. One interesting outcome we observed is the crea-
tion of mimics of the parental ligands. One of the chimeras,
AB208 (BAAAAA), is an activin A mimic; the fact that
AB208 is easy to produce is significant because the paren-
tal activin A ligand is hard to make in large quantities as a
recombinant protein. The first segment does not partici-
pate in receptor binding but rather is crucial for ligand
refolding. AB208 contains segments 3 and 4 of activin A
and, therefore, signals via Smad2/3. In addition, the affini-
ty of AB208 for activin type II receptors is similar to that of
activin A [60], implying that AB208 will be functionally
indistinguishable from activin A [60].

Nodal/BMP2 chimeras
Similarly to activin A, nodal also shares type II receptors
with BMP2, suggesting that it would be amenable to the
generation of nodal/BMP2 chimeras. Nodal is unusual,
however, because it requires a coreceptor such as cripto
to bind and assemble its signaling receptors, and it was
unclear how this difference would affect chimera behavior.
Similarly to the AB2 library, NB2 library chimeras are
denoted by the code (XXXXXX), where X is either N (nodal)
or B (BMP2), and all 26 = 64 were generated [63]. The basis
for the evaluation of proper refolding is the formation of
dimeric ligands, and 19 of 32 AB2 ligands and 23 of 64 NB2
chimeras met this criterion. The first BMP2 segment was
generally essential for proper refolding of both AB2 and
NB2 library chimeras. Only two of 32 chimeras with a
nodal segment in their first section produced a dimer,
whereas 21 of 32 NB2 chimeras with BMP2 segment in
their first section were refolded correctly. Similarly to
activin A, recombinant nodal is very hard to produce
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Figure 3. Disrupting or swapping receptor-binding epitopes yields TGF-b superfamily ligand chimeras with novel functions. (A) Activin A and BMP2 are depicted in cartoon

form with their type I receptor and type II receptor epitopes being indicated by red and green shading, respectively (dark shading, higher affinity; light shading, lower

affinity). Activin A (high affinity) and BMP2 (low affinity) each bind to the type II receptors ActRII and ActRIIB as indicated. (B) Disruption of the type II receptor-binding

epitope is predicted to yield an inactive activin A mutant (because activin A lacks type I receptor binding in the absence of type II receptor binding) and a BMP2 mutant that

binds to type I receptors but fails to recruit type II receptors, resulting in a dominant negative type I receptor antagonist. (C) Selective disruption of the type I receptor-

binding epitope in activin A results in a potent inhibitor of activin type II receptors, while loss of the BMP2 type I receptor-binding epitope is similarly predicted to result in

lower-potency antagonism of activin type II receptors as well as of BMPRII. (D) Swapping the type II receptor-binding epitopes between activin A and BMP2 is predicted to

result in a lower-potency activin A and, as we have shown, a BMP2-like ligand with enhanced signaling potency (e.g., AB204).
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and purify; we therefore sought a nodal mimic among NB2
ligands. As with AB2 chimeras, we predicted that seg-
ments 3 and 4 would dictate type I receptor binding and
the signaling specificity of the chimera. However, this
could be complicated in the case of nodal and nodal-like
NB2 chimeras because a cell surface coreceptor such as
cripto is required for their signaling and must also be
considered. Given the importance of segments 3 and 4,
we tested NB264 (BNNNNN) and NB263 (BBNNNN). As
expected, NB264 was indistinguishable from nodal and
caused induction of a Smad2/3-dependent luciferase re-
porter and Smad2 phosphorylation in the presence but not
in the absence of cripto [63]. While NB263 also resembled
nodal in the luciferase assay (16 h ligand treatment), it
differed from nodal in that it did not cause detectable
Smad2 phosphorylation as measured by western blot
(30 min ligand treatment) [63]. Therefore, segment
2 may play a role in controlling the signaling pattern of
nodal. Of all the successfully refolded NB2 chimeras, only
NB250 (BNNNBB), NB260 (BNNNNB), and NB264
(BNNNNN) had a desired pattern of XNNNXX, and all
mimicked nodal in the signaling assays [63].

NB250 represents a ‘minimalistic’ nodal-like chimera in
the sense that the three nodal segments it contains (2, 3,
and 4) appear to be the minimum number of nodal seg-
ments required for nodal-like activity. NB250 and nodal
displayed a nearly identical dose–response relationship in
a Smad2-responsive luciferase assay [63], and it was found
that NB250 induces ectopic expression of Pitx2 and alters
heart looping during the establishment of vertebrate em-
bryonic left–right asymmetry in a manner very similar to
that of nodal [63,64]. Interestingly, NB250 has rigid struc-
ture and, because it appears to be functionally indistin-
guishable from nodal, it was hypothesized that nodal itself
adopts a BMP2-like fold in complex with signaling recep-
tors and cripto. Structural rigidity of NB250 will likely
facilitate structural studies of its various complexes, in-
cluding the NB250/cripto/ActRII/ALK4 complex [63].

The role of TGF-b superfamily chimeras in osteogenesis
Osteogenesis plays a key role in bone formation and bone
repair, and TGF-b superfamily ligands, especially BMPs,
are essential inducers of this process [65,66]. Two BMPs
are currently available for clinical use for bone healing:
BMP2 (rhBMP2, Medtronic, USA) and BMP7 (osteogenic
protein-1, Stryker, UK). Numerous studies have reported
the use of BMP2 in craniofacial, periodontal [67,68], and
orthopedic procedures in humans [69,70]. BMP2 has been
approved for clinical use; however, its off-label use in a
variety of bone repair processes has raised concerns and
side effects have been reported [71]. To heal bone defects,
BMP2 is administered in high quantities [70,72], but such
doses of BMP2 are at the same time associated with
undesirable side effects such as cyst-like bone formation
and abnormal soft tissue swelling [73,74]. Therefore,
BMP2 mimics with higher therapeutic potency are needed.

AB204 (BABBAA) has segments 3 and 4 of BMP2
and retains BMP2-like signaling through the Smad1/5/8
5
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pathway [60,75]. AB204 has a much higher signaling
potency than BMP2 because it possesses the high-affinity
type II receptor-binding epitope from activin A (Figure 3D).
Consistently, both the level and duration of Smad1/5/8
phosphorylation are greater when pre-osteoblasts are trea-
ted with AB204 than with BMP2 [75]. AB204 is also super-
ior to BMP2 in causing mineral calcium nodule formation,
an important and pivotal step in bone apatite formation
[75]. The activin A sequence in AB204 was predicted to
render this chimera insensitive to the BMP antagonist
noggin [60], and this was reflected by the fact that while
noggin strongly downregulates the mineralization function
of BMP2 it had no effect on AB204 function in this capacity
[75]. Unlike BMP2, AB204 also potently inhibits activin
signaling owing to competition for activin type II receptor
binding [75]. Because activin antagonism can stimulate
bone formation [76–80], this provides yet another possible
mechanism whereby AB204 may promote bone growth and
healing. Indeed, we find that AB204 heals critical size
defects (CSD) in mice tibia and calvaria, and does so much
more effectively than BMP2. Strikingly, 1 month of AB204
treatment completely heals tibial and calvarial defects of
critical size in mice at a concentration 10-fold lower than a
dose of rhBMP2 that only partially heals the defect [75].

The crystal structure of AB204 indicates that its overall
architecture is similar to that of BMPs, despite the fact
that AB204 shares half of its amino acid sequence with
activin A, including parts of finger 1 and finger 2 [75]. The
sequence of the AB204 type I receptor-binding epitope is
mostly, although not entirely, derived from BMP2. This is
predicted to affect AB204 function because the structure of
the BMP2/BMPRIa/ActRII complex shows that there is an
important contact between finger 2 of BMP2 and the
BMPRIa ECD that is lacking between AB204 and
BMPRIa. Specifically, Tyr103 of BMP2 within finger 2 cre-
ates a strong hydrogen bond to Asp84 of BMPRIa that is
aided by additional P stacking interactions between
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Tyr103 of BMP2 and Phe85 of BMPRIa. AB204 possesses
an activin A-derived Ile at position 103, and therefore lacks
these interactions with BMPR1a. However, we find that
the affinity of AB204 for BMPRIa is increased to BMP2-
like levels when the Ile at position 103 is replaced with a
Tyr [AB204, KD = 170 nM; AB204 (I103Y), KD = 6.6 nM;
BMP2, KD = 5 nM], while its affinity for ActRII remains
unchanged [75]. Furthermore, the potency of this site-
directed point mutant, AB204 (I103Y), also referred to
as AB204.1, is significantly higher than that of AB204 in
a BMP-responsive luciferase assay with EC50s of 2 nM and
9 nM, respectively. Importantly, AB204.1 is significantly
more potent than AB204 (and BMP2) in promoting osteo-
genesis in vitro [75].

The role of TGF-b superfamily chimeras in
chondrogenesis
Chondrogenesis is an essential process in cartilage forma-
tion. However, cartilage has a very limited regeneration
capability because, unlike bone, cartilage is not vascular-
ized [81]. Nevertheless, similarly to osteogenesis, chondro-
genesis is largely governed by TGF-b superfamily ligands
(Figure 4) [82–87]. Both osteocytes and chondrocytes can
be differentiated from pluripotent stem cells (PSC) in vitro
using a two-step process [88]. In the first step, PSCs
differentiate toward a mesenchymal stem cell (MSC) phe-
notype following treatment with decreasing concentrations
of activin A for the first three days and then subsequent
blockade of activin A signaling with its antagonist follis-
tatin from days 4–7. In the second step, the MSCs differ-
entiate to chondrocytes [88].

In an approach that measures differentiation of adipose-
derived MSCs into a 3D pellet of chondrocytes in a single
step [89], we find that the activin A-mimicking AB208
chimera is not effective, whereas the AB208 mutant
AB235, nodal, and the nodal-mimicking NB250 are all
strongly chondrogenic [63,90]. AB235 is a derivative of
tes
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AB208 in which the activin A sequence 100-IIKKDIQN-
107 in segment 6 that is involved in both type I and type II
receptor binding has been replaced with the corresponding
BMP2 sequence, 98-VVLKNYQD-105. This mutation was
originally designed to reconstitute noggin binding into
AB208 [60] but it also includes substitution of lysine at
position 102 to leucine that is predicted to disrupt high-
affinity AB208 binding to ActRII and thereby diminish
activin-like signaling [13,57]. Interestingly, the attenuat-
ed activity of AB235 relative to AB208 and activin A more
closely resembles nodal and NB250 signaling activity,
and this may provide the basis for its increased chondro-
genesis.

Notably, despite the broad use of activin A for differen-
tiation of pluripotent cells to mesoderm-derived progenitor
cells [88], natural development strongly relies on nodal
signaling rather than activin A signaling during mesendo-
dermal commitment across all different vertebrates
[49,91,92]. Nodal is a morphogen that not only induces
mesendoderm but also appears to pre-specify other somatic
lineages derived from the mesoderm and endoderm accord-
ing to the level of nodal signaling in a cell [49,91]. Moreover,
we have observed that the maximal dose-dependent acti-
vin A signaling is much stronger than corresponding max-
imal nodal signaling [93]. The chondrogenesis experiment
described above, therefore, supports the hypothesis that
nodal-like levels of signaling might be more appropriate for
early mesodermal differentiation than higher activin-like
levels. Recent experiments also suggest that nodal/GDF1
heterodimers are better than nodal itself in stimulating
hESCs into endoderm progenitors [94].

Therapeutic applications for engineered TGF-b
superfamily ligands in regenerative medicine
The incidence of musculoskeletal diseases is sharply rising
owing to the fact that individuals are increasingly elderly,
sedentary, and obese, particularly in developed countries
[95]. Both in vivo and ex vivo approaches are being used to
develop regenerative therapies for the treatment of these
diseases, and these include the use of TGF-b superfamily
ligands for differentiation of PSCs into specific musculo-
skeletal lineages (Figure 4).

Engineered TGF-b superfamily ligands have multiple
potential benefits for regenerative medicine, including the
production of mesoderm-like progenitor cells with varying
differentiation potential ranging from unipotency to multi-
potency. This can predispose the progenitor cells to specific
lineages upon terminal differentiation, generate higher-
quality cells upon in vitro differentiation, and elicit a more
robust tissue-repair response in vivo. Engineered TGF-b
superfamily ligands may also speed up the kinetics of
differentiation, thereby minimizing the risk of unwanted
mutations. Finally, they should allow administration of
more potent ligands at lower concentrations, therefore
representing a safer venue for human treatment
(Figure 4).

As outlined above, our data show that simple swapping
of receptor-binding epitopes can be an effective step in
initial ligand construction for a particular medical purpose.
Furthermore, we have provided evidence suggesting that
this approach can be complemented by structure-guided
mutations of first-generation chimeras to further enhance
their properties.

As a general strategy, we propose a two-step process
for engineering TGF-b ligands for therapeutic applica-
tions. In the first step, swapping receptor-binding epitopes
ligands can yield desired properties, as illustrated by
AB204. In the second step, incorporation of structure-
guided mutations can further improve ligand function,
as we have demonstrated with the AB204 (I103Y) mutant
that we named AB204.1. Such a two-step approach should
be generally applicable to other TGF-b superfamily li-
gands. For example, we predict that musculoskeletal dis-
orders can also be treated by increasing the chondrogenic
properties of GDF5 by replacing its low-affinity type II
receptor-binding epitope with that of activin A, thereby
maximizing its type II receptor binding (Figure 4A). In
addition, the structure of the GDF5/BMPRIa complex [21]
indicates that the affinity of GDF5 for BMPRIa and BMPRIb
can be switched and adjusted to maximize ligand-induced
chondrogenesis or ex vivo regenerative medicine directed to
cartilage repair (Figure 4B).

Other disease applications
We predict that chimeric TGF-b superfamily ligands will
also have applications in diseases including cancer, fibrosis,
and diabetes. The roles of TGF-b superfamily ligands and
pathway modulation in cancer, and methods of targeting
their signaling for medical purposes, have been the subject
of intense studies [96–101]. TGF-b superfamily ligand sig-
naling can cause potent tumor-suppressive or tumor-pro-
moting effects depending on the tumor type and the stage of
tumor progression [102]. For example, BMP2 is reported to
suppress the proliferation of MCF7 breast cancer cells
[103]. However, in contrast to this anti-oncogenic effect,
BMP2 has also been reported to act as a pro-oncogene in
breast cancer by promoting cancer cell invasion [104]. Inter-
estingly, AB215 (BABBBA), a chimera with activin-like
affinity for the type II receptor ActRII and augmented
BMP2-like signaling [60], is able to exert stronger anti-
proliferative effects on estrogen receptor a-positive breast
cancer cells than BMP2 [105]. Exploration of other ligands
and chimeras has also shown that BMP9 and its analogs
have very strong anti-proliferative properties in liver carci-
nomas.

Abnormal formation of excess fibrous connective tissue
is related to many diseases involving single or multiple
organs, including idiopathic pulmonary fibrosis (IPF),
tubulointerstitial fibrosis (kidney), cirrhosis (liver), cardiac
fibrosis, and skin fibrosis. Each of these diseases has a
different onset, but in each case the TGF-b pathway,
particularly TGF-b1, plays a prominent role in inducing
fibrotic change [106–111]. Because of the promiscuity be-
tween TGF-b superfamily ligands and their receptors, the
level of TGF-b1 signaling can be tempered with other TGF-
b superfamily ligands. It has been shown, for example, that
attenuation of phosphorylation mediated by BMPs by the
BMP antagonist gremlin overexpressed in fibroblasts in
lungs of IPF patients may lead to TGF-b1-induced epithe-
lial–mesenchymal transition (EMT) and thus promote fi-
brosis [112]. It has also been shown that, through
activation of the Smad1/5/8 pathway, BMP-7 suppresses
7
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TGF-b1-induced nuclear accumulation of Smad3 [113],
leading to the discovery that BMP-7 can antagonize he-
patic fibrosis in rats [109]. It is therefore likely that an-
tagonizing TGF-b1 signaling, and possibly doing so by
exploiting other TGF-b superfamily ligands such as BMPs,
will play an important role in fibrosis treatment. Using
natural ligands for this purpose, however, may alter their
normal essential physiological processes in a deleterious
manner. In this case, engineered ligands designed to have
maximal therapeutic activity and minimal side effects may
provide a unique therapeutic opportunity in the treatment
of fibrosis.

Type 1 diabetes mellitus is caused by autoimmune
destruction of insulin-producing b cells in the pancreas.
Currently there is no cure for type I diabetes, and patients
require constant insulin intake. Insulin independence can
be achieved by the transplantation of pancreatic islet-like
cell aggregates (ICAs) [114]. However, because donor tis-
sue is not readily available, the production of pancreatic
ICAs by differentiating autologous adipose-derived stem
cells (ASCs) [115] could be an excellent alternative in ex
vivo cell replacement therapy. Natural TGF-b superfamily
ligands have been employed in this process but often have
limited capabilities to promote efficient differentiation of
ASCs to ICAs. Alternatively, chimeric TGF-b ligands can
be designed with enhanced and directed cell differentiation
activity. The potential of using the chimeras to drive cell
differentiation was demonstrated in a pilot experiment
showing that AB204 and AB211 from the AB2 library
are equal to or better than BMP4 in driving cord blood-
derived iPS to hemangioblasts. This finding is remarkable
because neither activin A nor BMP2 promotes the differ-
entiation of iPS to hemangioblasts, and both AB204 and
AB211 are distinct from BMP4.

Concluding remarks
Although small-molecule inhibitors of TGF-b receptor
kinases [97,116], antisense oligonucleotides and antisense
RNA [117], monoclonal antibodies [118], and ligand traps
[119–122] are in various stages of development [123],
therapeutic modalities directly targeting the TGF-b path-
way have yet to emerge in the clinic. Because TGF-b
signaling is driven by ligand/receptor affinities and speci-
ficities, it is not simple to address how a subset of ligands
with overlapping use of signaling receptors gives rise to
diverse signaling outcomes in a given cell. We also do not
currently have a clear quantitative understanding of such
mechanisms, and detailed knowledge of the intercellular
interplay of ligand signaling and crosstalk with other
signaling pathways is lacking. Therefore, using a hit-
and-miss approach to target the TGF-b pathway is an
oversimplified approach to the overly complicated problem,
and will likely result in side effects that outweigh the
desired end result.

We contend that engineered TGF-b superfamily ligands
have the potential to redirect particular TGF-b pathways
for medical purposes. Such designer ligands can be devel-
oped to target specified receptors and to be free of complex
regulatory and counter-regulatory mechanisms. For exam-
ple, AB204, AB211, and AB215 augment BMP signaling
but are noggin-insensitive [60]. AB215 is also a potent
8

activin inhibitor [105]. Inactivating its BMP-like type I
binding site by set of specific point mutations can, there-
fore, provide a ligand whose only function will be to block
the signaling of ligands, such as activin, that require
activin type II receptors. Such simplified function might
be very useful in pharmacology.

Designer chimeras are also excellent tools for the study
of the mechanistic aspects of signaling. They can act as
interfering probes that disrupt natural cell-to-cell signal-
ing and help in deciphering the signaling synchronization
mechanism during tissue development. As demonstrated
above, the use of chimeras is particularly exciting for its
potential use ex vivo for tissue engineering including bone
and cartilage production [63,90,124–127]. Libraries of de-
signer chimeras with various new functions can easily be
tested in ex vivo settings where side effects are not an
impediment to the rational development of regenerative
cell therapeutics.

There are many illnesses, cancer and developmental
disorders included, that are related to dysfunctional sig-
naling pathways. After almost a century of intense re-
search, the cure for cancer is not a near prospect and
new aging-related developmental disorders are rapidly
rising. Correcting dysfunctional signaling pathways in
disease may require a set of very specific biobetters either
as therapeutics or as tools for ex vivo conditioning of stem
cells. It is in this context that we envisage engineered TGF-
b superfamily ligand chimeras having an important place
as one arrow in the quiver of future pharmaceuticals.
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